
| BABYLONIA tema 3|201968

Tema PROGRAMMING IN MOTION

Es ist nicht einfach, das im Lehrplan21 verankerte Schreiben von Programmen im
zweiten Zyklus anders als oberflächlich zu vermitteln. Ein Grund liegt mitunter
darin, dass die grundlegenden syntaktischen Elemente der Programmiersprache
für Programmierer offensichtlich sind, nicht aber für Kinder. Es braucht mehr als
Erklärung, um die Logik dahinter zu erkennen - es braucht Übung. Ein Ansatz kann
darin liegen, Code-Elemente physisch darzustellen und so jene Vertrautheit in
deren Umgang zu erlangen, die für komplexeres Programmieren unerlässlich ist. Der
folgende Beitrag gibt eine Übersicht zu den verschiedenen Möglichkeiten, mit denen
sich Codes durch Bewegung lernen lassen und sich gleichsam die theoretischen
Grundlagen in anderen Bereichen erschliessen (Sprache und Mathematik).

The Swiss second cycle (upper primary)
curricular aim of writing programs is
hard to meet in more than just a super-
ficial way. Part of the reason is that the
basic syntactic elements of programming
languages seem obvious to programmers
but not to children. Seeing the logic be-
hind it takes more than just explaining,
it takes practice. A way of bridging this
gap might be the physical acting out of
code elements used to drill functional
elements in order to gain the familiarity
needed for more complex programming.
The paper gives an overview of different
ways of code enacting and looks for par-
allels to theoretical foundations in other
areas (language and math).

The Swiss curriculum
The regional curriculum (LP21) provides
aims for both foreign languages (here
English) and programming (Medien und
Informatik). The skills hopefully acquired
through the following activities are de-
scribed under having learners be able to
model processes using loops, conditions
and parameters and finally write func-
tional code. In foreign languages, learn-
ers are expected to reach the A2 level

by the end of primary school (reading,
speaking and listening) and the language
involved in programming (primarily Eng-
lish outside the classroom) is extremely
functional in real-world, A2 level com-
municative situations. Thus, the context
of programming in English can be seen
in a CLIL context and the activities below
lend themselves to an embodied approach
to language learning.
I usually start the introduction to pro-
gramming with simple motion com-
mands steering some sprite (in the old
days it was a turtle in Scratch) to draw
a square:
Move, turn right, move, turn right, move,
turn right, move, turn right
Fourth or fifth grade children (9-11 year
olds) will immediately understand this,
especially if acted out. The explicit form
of “turn right” is “turn right by 90°”. At
this stage however, this is what the chil-
dren will intuitively understand. As a
next step, the tedious repetition can be
handed over to a loop:
Repeat 4 times:
 Move
 Turn right
This step also is teachable within the first

Patrick Büchel |
Zürich

Patrick Büchel is
a primary teacher
at Schule Auhof in
Zurich.

3|2019 tema BABYLONIA | 69

few lessons as children are familiar with
simple repetitions. For acting it out, a
second child can play the loop, counting
the cycles and ordering the cat to have
another go.
The next step of complexity is to program
a polygon:
Repeat n times:
 Move
 Turn right by 360° / n
Astonishingly, it is not so much the math
of calculating the angle but more the
introduction of a variable (or a param-
eter, as the curriculum puts it) which
makes this step hard for many students.
But we can go even further, introducing
recursion:
To draw a recursive polygon (n):
 Move
 Turn right by 360° / n
 If (n > 2) then:
 Draw a recursive polygon (n-1)
Adding just a few lines has contributed
to the concepts of procedures, logical or
Boolean operators, conditions and recur-
sive calls as well as a complexity impos-
sible to grasp for most in the class. This
is not a program you can enact either – it
would take hours and the actors would
inevitably get confused and lose control.
The resulting drawing however makes
the process a bit more understandable:
For a teacher who was so proud of his

Figure 1: Recursive polygon (4) Figure 2: Recursive polygon (5)

(Those who will try to code this in Scratch will find that I made a few changes to make the graphics
more intuitive.)

fourth graders after they wrote their first
square drawing program within a lesson,
this is frustrating. When the power of
complexity starts getting interesting you
lose most students, and the gap to close
seems huge. A few lines which are quite
basic to a seasoned programmer seem al-
most unteachable. What is the problem?
The problem, of course, is that seasoned
programmers think that the functional
details and their interaction are self-ev-
ident, “logical”. Explain the working of
a loop, a condition and a variable and
everything should be clear, right? We
know from math teaching (and also from
language teaching) that this is not the
case. 2 * 4 is easy but (2 * (3 + (6 *
2))) is not. You can solve it step by step,
but in order to find an algorithm for a
complex problem, your focus needs to
go beyond the single steps. As in every
complex action (e.g. walking), the ba-
sic parts have to be automatized. What
programmers call “logical” should better
be called “familiar” - like bending your
foot the right angle after each step. In
order to understand the interaction of a
condition (an if statement) and a Boolean
operation each has to be automatized,
and to understand a condition within
a larger algorithm, this interaction it-
self has to be automatized. Just like in
math, part of acquiring this familiarity

Thus, you have
here an example of
seemingly easy and

familiar language
(writing and reading

if/then/repeat/
move) but the true
comprehension of

which is not always
obvious to the

learners!

| BABYLONIA tema 3|201970

which goes beyond understanding it in
principle is switching between different
forms of representation, i.e. writing code,
analyzing code, running code (seeing it
in action, seeing its results) and acting
out code.
Thus, you have here an example of seem-
ingly easy and familiar language (writing
and reading if/then/repeat/move) but
the true comprehension of which is not
always obvious to the learners!

Ways of acting out code
In language teaching, acting out seems
obvious. In math or IT teaching, it comes
in just as handy and does about the same
thing. It shifts from language to another
form of representation which (just like
music) often allows for more complexity
to be grasped at once. As opposed to when
you explain a piece of code, when you act
it out you can do so at an increasing speed
which forces students to internalize the
code parts, enabling the learner to use
them on a higher level. Accelerating act-
ing out (e.g. in a competition) will force
students to control “the logic” behind
it without full executive control – to
automatize it.

Simulation
When a child acts like the cat drawing a
square, he or she is merely a convenient
simulation of the code. The advantages
over making Scratch do this is that the
acting child has to demonstrate some
comprehension and the peers observing
will mostly do the same in empathy (or
in order to detect mistakes). It also allows

for a slow, flexible execution the teacher
can comment on at will.

Class drill
In a similar manner, in an entire class,
each student individually can act out a
small element of code, e.g. a condition:
IF I raise my hand THEN you clap your hands
ELSE (if I stick my hand any other direction) you
snap your fingers.
Here your goal is to demonstrate the log-
ic, assess understanding, and drill, all in
one go. As in language repetition drills,
you need to flexibly alter your commands
and sometimes single out students who
you observe lacking understanding or
who you suspect of just copying the
others.

Program execution
Instead of just simulating a com-
mand-driven drawing cat (where syntax
understanding is of minimal importance),
single students can perform a parameter-
ized program of some complexity (cf. the
example of a number-analyzing dancing
program below). The goal is that stu-
dents become fluent in analyzing code. As
with the cat simulation, peers will closely
observe the student acting out. If you
carefully choose the sequence of students
acting out and the order of parameter val-
ues, you can control the learning curve of
the entire class. Once you let classmates
choose values for their acting peers, they
will try to predict program execution, an
important programmer skill.

Program parts as theater roles

The number dance (number)
 If (number is even)
 Clap your hands
 Else
 Stomp your feet

 Repeat for (length of the number)
 Do one turn of a pirouette

 If (number is bigger than 100)
 Land on your belly
 Else
 Land on your bum

Figure 3: The number dance for students (left) and in Scratch (right)

3|2019 tema BABYLONIA | 71

A group of students can also each act
out a part of a larger program and thus
together run it in interaction. Someone
will play a loop, someone the Boolean
operator within, someone a variable and
someone else the drawing cat receiving
orders, let’s say from the loop. As any
teacher who has put together a theater
production with his or her class will tell
you, one main challenge is to manage all
the actors who are not currently saying
their line into nevertheless participating
in some way or at least keeping track of
the play’s progress in order not to miss
their line. Very much the same holds true
for acting out code. In addition and in
contrast to theater acting, it is anything
but obvious to define the roles. In my
class, we had the following discussion
in English:
Is “move 10 steps, turn 90°” one role, the cat who
knows what to do when? Or is it two roles, the
cat commander and the cat. Can the cat com-
mander be the loop who at the same time has
to count the number of loop executions or do
we need to have a loop, a cat commander and a
cat? Or do we even need a loop counter (some
kind of variable), a loop (saying something like
“one more time!”, a cat commander specifying
what exactly to do and the cat actually doing it?
If you carry this kind of discussion with
your students, it might lead them to ana-
lyze code execution more closely. For be-
ginners and with initial understanding
and drilling in mind, this kind of acting
out – as fun as it sounds – carries a high
risk for confusion (the funniest if not
most educational part being when the
directing teacher starts getting confused).

Learning environment

Finally, you have what I like to call a
code-elements learning environment.
You need a preferably large space (class-
room, gym, outside area) with various
visual code pieces, each with relatively
simple rules for their correct use by a
group of students. As variables play a
powerful role as parameters or in the
storage and manipulation of information,
the students enter the space as variables.
Variables can receive an initial value.
They can have their value changed and
they need at all times to remember their
current value and tell it to anyone asking
(before receiving their initial value they
actually don’t know their value and will
say so if asked):
Set x to 1 // initial value
Set x to (x + 1) // value change

This is a special example of value change
in which the variable assumes at once
the role of receiving a new value and of
a parameter offering its previous value.
Visual code pieces

As in language repetition drills, you need to
flexibly alter your commands and sometimes
single out students who you observe lacking

understanding or who you suspect of just
copying the others.

| BABYLONIA tema 3|201972

The following visual pieces are used (I am using q where a variable can be inserted
to receive a new value or to give its value as a parameter):

Notice that this is a small choice of the existing Scratch commands for the sole
purposes of setting variable values and controlling program flow. And even from
that subset anything too complicated (division) or too boring (Boolean = operator)
has been omitted.

Usage
Elements are introduced one by one, building up complexity.

 › Set with value
 › Set with operator
 › If condition with logical operator
 › Repeat a number of times
 › Replacement of “Repeat a number of times” by “Repeat until”

It is a good idea to start challenges after the introduction of “sets” and conditions.
Loops require some familiarity with the simpler concepts first. Here are some com-
petition task examples, also in order of increasing complexity:

3|2019 tema BABYLONIA | 73

In teams, single values as goals

Values in a sequence (each member aims for one of the values: 10, 11, 12, 13, 14)

The biggest the quickest (reach the greatest sum of all member values quicker
than the other teams)
Strategy: Find the most powerful multipliers, rotate among
members.

All 7 (all members aim for the same value)
Strategy: How does the last member become 7? E.g. become
14 and subtract by 7.

One big, others small (one member needs to become as big as possible while
the others remain as close to 0 as possible)

Everybody (social challenge)

My birth month (everybody tries to reach his or her month of birth, partici-
pants are allowed to murmur: “I’m 3, I want to be 7”
Strategy: Help others! Be transparent!

In teams, value sequences as goals

Multiplication table (each member has to become the numbers of a multiplica-
tion table sequence: 2, 4, 6, 8 ….; 3, 6, 9, 12 …; 4, 8, 12, 16 …)
Strategy: What value do others need to have in order to help me
reach my values? Can I use mathematical relationships between
sequences (e.g. 2 = 2 * 4)?

General strategy: Discuss your goals in your team before trying out.

These examples show how programming can be carried out entirely in English, with
useful English embedded throughout the lessons (if…then…else…find…set….).

Discussion of the “learning environment”
The second part of this article discusses what I call the “learning environment” (because
there is space for moment around rich concepts) which I tried out for 1-3 lessons
(for each topic) of two classes of 5th graders in the canton of Zurich in settings of
full (18 students) and half class (10 students) as well as with adults with a language
teaching background in a workshop. This is very meager data for conclusions, so let’s
just call it first impressions.
First of all, most children are not very motivated to use the material. The ones
motivated are the ones that already show a good understanding of the mechanisms.
What motivates them are the strategical challenges (partially also the prospect of
winning), not the drill. Drilling situations (quick and frequent use) are rare and only
occur with the simple “set” elements.
Furthermore, as opposed to – especially older learners – adults, children will accept
a short introduction and mostly understand a quick demonstration of the elements.
Corrections are made among peers or by the instructor as they try it out. Adults

| BABYLONIA tema 3|201974

refuse to try before fully understanding
the how and also the why.
From this first impression, one could
conclude that the intended effect of the
drilling does not occur as quickly as one
might have expected. In this instance, it
could be that the pace of introduction was
too fast, and we shifted to tasks needing
too many strategic considerations too
early. Also, in the tight classroom envi-
ronment, the motivating factor of really
moving (running and screaming) was
missing – doing it in the gym would
have been better!
It can also be asked if the motion and
sensory input in this learning environ-
ment fit the internal representations we
want to build and strengthen (or the
areas in our brain we want to trigger).
No studies were found on brain areas
affected by programming but based on
questionnaires, Petre (1999) does find
that programmers use mental imagery
different from the actual form of im-
plementation (code). These descriptions
of seasoned programmers are however
highly individual and on too high a lev-
el of abstraction to point to brain areas
involved.
More promising are Núñez’ (2008) efforts
to show the foundations of mathematics
in embodiment. To prove his point, he
analyzes language and gestures used by
mathematicians. He finds movement (in
the sense of “to go somewhere”) to be
a common way of not only expressing,
but also thinking of, static mathematical
concepts. One of Núñez’ examples is an
equation in the form of a function. Con-
sidering many programming languages
call their pieces of algorithm “functions”
and considering programming algorithms
are always some action in time, this
seems like a good fit.
Another well researched domain is lan-
guage. Besides obvious action words like
move or turn, programming languages
use what linguists call function words
as opposed to content words or lexical
words. Content words refer to things,
their properties and actions, whereas

function words modify content words
or express relations between them. Pro-
gramming language examples would be
if … then … else, not, and, or, until, while.
Repeat, used for loops, at first seems like
an action verb, i.e. a content word. How-
ever, without specifying what to repeat, it
does not command any action, so it is ac-
tually a modifier (specifically a multipli-
er) for action verbs, i.e. a function word.
Building on research showing that words
referring to action like kick activate the
same neurons the action itself does but
also words related to actions like words
for tools for actions do so (cf. overview
in Pulvermüller 2005), Gosselke (2010)
suggests that function words have roots
in content words which are weakened
and complemented by connections to the
language areas, not lost during grammat-
icalization (Gosselke 2005: 49). Gosselke
shows this grammaticalization process
with the word going to, used in several
languages to express future tense.
Back to programming: Eckerdal & Ber-
glund (2005) interviewed engineering
students in their first year about learning
object-oriented programming, a part of
their curriculum. They found that the
students who got into programming
more easily could switch between an
object and a process-understanding of
concepts. Let’s take as an example an
ordered list. The static object would be
a list, where for any pair xi and xi+1, we
would have xi is smaller than xi+1. The
process description would be a sorting
algorithm, e.g. to repeatedly loop through
the list and switch any pair where the
first item is larger than the second. The
first, abstract view is necessary to think
of a larger program where the sorted list
is just a detail, whereas the process view
assures the concept is understood in de-
tail (this reminds me of the teacher’s op-
erationalizing of learning aims). Eckerdal
& Berglund base their findings on Hazzan
(2003) who comes to a similar conclusion
and Sfard (1991) who postulates such a
duality in mathematics, using similar
examples as Núñez.

Findings from
language, math
and programming
suggest that motion
plays an important
part in building,
understanding and
dealing with abstract
concepts.

3|2019 tema BABYLONIA | 75

Literature
Eckerdal, A., Thuné, M., & Berglund, A.
(2005, October). What does it take to learn
‘programming thinking'?. In Proceedings of
the first international workshop on Computing
education research (pp. 135-142). ACM.A.
Eckerdal & A. Berglund 2005. What Does It
Take to Learn ’Programming Thinking’?
Gosselke, S. (2011). The Neural Representations
of Function Words: Neurolinguistic
Beliefs Reconsidered in the Light of
Grammaticalisation Theory. S. Gosselke 2010.
The Neural Representations of Function
Words. Neurolinguistic Beliefs Reconsidered in
the Light of Grammaticalisation Theory.
Hazzan, O. (2003). How students attempt
to reduce abstraction in the learning of
mathematics and in the learning of computer
science. Computer Science Education, 13(2),
95-122.
Horn, M. S., & Jacob, R. J. (2007, February).

Designing tangible programming languages
for classroom use. In Proceedings of the 1st
international conference on Tangible and
embedded interaction (pp. 159-162). ACM.:
Designing Tangible Programming Languages
for Classroom Use
Núñez, R. (2008). A fresh look at the
foundations of mathematics: Gesture and
the psychological reality of conceptual
metaphor. Metaphor and gesture, 93-114.R.
Núñez: A Fresh Look at the Foundations of
Mathematics: Gesture and the Psychological
Reality of Conceptual Metaphor
Papert, S. (1980). Mindstorms: Children,
computers, and powerful ideas. Basic Books,
Inc..
Papert, S. (1993). The children's machine:
Rethinking school in the age of the computer.
BasicBooks, 10 East 53rd St., New York, NY
10022-5299. S. Papert 1993. The Children's

Machine
Petre, M., & Blackwell, A. F. (1999). Mental
imagery in program design and visual
programming. International Journal of Human-
Computer Studies, 51(1), 7-30.
D-EDK/Deutschschweizer
Erziehungsdirektoren-Konferenz 2010–2014,
Lehrplan 21, D-EDK, Luzern.
Pulvermüller, F. (2005). Brain mechanisms
linking language and action. Nature reviews
neuroscience, 6(7), 576.F. Pulvermüller 2005.
Brain mechanisms linking language and action.
Sfard, A. (1991). On the dual nature of
mathematical conceptions: Reflections on
processes and objects as different sides of the
same coin. Educational studies in mathematics,
22(1), 1-36. A. Sfard 1991. On the Dual Nature
of Mathematical Conceptions: Reflections on
Processes and Objects as Different >>Sides of
the Same Coin.

Maybe: Concluding thoughts
Findings from language, math and pro-
gramming suggest that motion plays an
important part in building, understand-
ing and dealing with abstract concepts.
Using motion to strengthen the under-
standing of code elements may be a good
idea. However, if most programming con-
cepts are based on motion, we can’t just
always walk around to strengthen their
understanding. There has to be some
differentiation like a typical motion for
repeat (I would imagine some circular
motion) and another one for if … then …
else (maybe some forking trail).
Let’s close the loop with someone who
could with some right be called the
grandfather of Scratch. Seymour Papert,
greatly influenced by Piaget, used the
LOGO programming language to empow-

er children to construct their own un-
derstanding of abstract concepts (Papert
1980, 1993). LOGO was not yet a block or
even visual language like Scratch where
children can graphically connect code
elements. LOGO was text-based, but with
simple elements, and it featured “turtle
graphics”, a graphically less fancy way
of doing exactly what my students do
with the square-drawing cat (for a feel
of turtle graphics, try Snap, a more com-
plex and extendible successor of Scratch,
www.snap.berkeley.edu). What Papert
intended was not mainly that children
learn to program, but that they learn the
thinking behind programming and that
their general cognitive (including math-
ematical and linguistic among others)
skills would be improved through pro-

gramming, and Scratch and Snap, used
in today’s classrooms, continue Papert’s
legacy. The activities described in this
article were an attempt to replace mere
verbal explanations of code by having
learners physically experience code be-
fore using it in a more complex way on
the computer. Because I wanted to un-
derstand why drilling in the “learning
environment” didn’t work as well as I had
intended, I delved deeper into embodied
representations of what I was trying to
teach. The articles referenced in this text,
describe how various concepts have their
roots in embodiment. Finally, I have come
to the conclusion that the very tools I
am using (Scratch and Snap) in and of
themselves are designed to support an
embodied learning environment.

I have come to the conclusion that the very
tools I am using (Scratch and Snap) in and of

themselves are designed to support an embodied
learning environment.

